Medical Device Risk Management
ISO 14971

Dan O’Leary
President
Ombu Enterprises, LLC
Dan@OmbuEnterprises.com
www.OmbuEnterprises.com
Speaker Biography

• Dan O’Leary
 – Dan O’Leary is President of Ombu Enterprises, LLC, an education, training, and consulting company focusing on Operational Excellence using analytical skills and a systems approach to operations management.
 – Dan has more than 30 years experience in quality, operations, and program management in regulated industries including aviation, defense, medical devices, and clinical labs.
 – He holds a Masters Degree in Mathematics; is an ASQ certified Biomedical Auditor, Quality Auditor, Quality Engineer, Reliability Engineer, and Six Sigma Black Belt; and is certified by APICS in Resource Management.

• Ombu Enterprises, LLC
 – Ombu works with small manufacturing companies, offering training and execution in Operational Excellence. Focusing on the analytic skills and systems approach of operations management, Ombu helps companies achieve efficient, effective process and regulatory compliance.
Outline

• Status of ISO 14971:2007

• Links to regulatory requirements (QSR & ISO 13485)

• Overview of ISO 14971:2007

• Q&A session

• Summary and Conclusions

• Questions
Our Class

• Our approach is casual

• Write your name on a table tent

• Turn off your cell phones during the class

• Ask lots of questions

• Bring examples from your experience

• Participate

• Have fun!
Participant Introduction

• Your Name

• Your company

• Your job title

• Something about the Risk and Hazard Assessment for Medical Devices issues you face in your company

• Something about Risk and Hazard Assessment for Medical Devices that you want to know
Dan O’Leary’s Biography

• Dan has more than 30 years experience in quality, operations, and program management in regulated industries including aviation, defense, medical devices, and clinical labs.

• Dan earned a Masters Degree in Mathematics

• Dan is an ASQ certified Biomedical Auditor, Quality Engineer, Reliability Engineer, and Six Sigma Black Belt. He is certified by APICS in Resource Management.
ISO 14971:2007 Development

• ISO 14971:2007 is the second edition

• The second edition was published on March 1, 2007

• ISO 14971 is managed by ISO TC 210 – Quality management and corresponding general aspects for medical devices
FDA Recognition Status

• The FDA recognized the current version on Sep. 12, 2007.

• Their recognition extends to the whole standard

• A declaration of conformity means that
 – (1) a process appropriate for medical devices and their accessories, including in vitro diagnostic devices, has been used to identify hazards and hazardous situations, estimate and evaluate the risks, control those risks including overall residual risk, and monitor the effectiveness of the controls, and
 – (2) criteria based upon applicable national or regional regulations, relevant international Standards, information such as the generally accepted state of the art, and known stakeholder concerns was used to determine risk acceptability.
EN ISO 14971 Status

• EN ISO 14971:2009
 – Conformity to EN ISO 14971:2007 expired on March 21, 2010
EN ISO 14971 Versions

- Many EN standards start with an ISO version
- Various standards bodies may adopt them, add information, and renumber them.

CEN doesn’t sell standards; purchase them through national standards bodies. As a result, the standards are renumbered (again).

DIN EN ISO 14971:2009
Links to Regulatory Requirements (QSR & ISO 13485)
QSR Requirements for Risk Analysis

• The FDA requires risk assessment as part of design validation. (820.30(g))

• *Design validation* means establishing by objective evidence that device specifications conform with user needs and intended use(s). (820.3(z)(2))

• Since medical devices need to both safe and effective, risk management, starting in the design phase, is a natural approach.
ISO 13485:2003 & Risk Management

• Clause 7.1 requires, “. . . risk management throughout product realization.”
 – In addition, “Records arising from risk management shall be maintained”
 – The standard recommends ISO 14971 for guidance related to risk management.

• Clause 7.3.2 says that design and development inputs include risk management outputs.
An Overview of ISO 14971:2007
The Risk Management Flow

Adapted from ISO 14971:2007 Figure 1
Risk Management Plan

• Risk management activities need an overall plan
• The risk management plan has standard elements:
 – Scope (including the life-cycle)
 – Responsibilities and authority
 – Review requirements for risk management
 – Risk acceptability criteria
 – Risk verification
 – Production activity data collection and review
 – Post-production activity data collection and review
Risk Management File

• The documents and quality records are maintained in the Risk Management File.

• Think of this as a filing cabinet containing information about the risk management program
 – In practice, it is usually a variety of documents, often in different formats (text files, spreadsheets, etc.)

• You must be able to readily retrieve documents and records of the Risk Management File.
Risk Analysis (Clause 4)

- Document both the intended use and foreseeable misuse of the device
- Identify known and foreseeable hazards associated with the device
- Estimate the risk for each hazardous situation

\[
\text{Hazard + Sequence of events} \rightarrow \text{Hazardous Situation}
\]

\[
\text{Severity} \times \text{Probability} \rightarrow \text{Risk}
\]
Risk Evaluation (Clause 5)

- The Risk Management Plan defines risk evaluation criteria for each hazardous situation.
- Evaluate each hazardous situation, individually, against the criteria in the Risk Management Plan.

| If risk reduction **is** required, follow clauses 6.2 to 6.6 | If risk reduction **is not** required, go to clause 6.7 |

Example
- A Risk Management Plan defines five risk levels, 1 to 5, and shows how to calculate them using severity and probability.
- Any risk of level 4 or 5 must be reduced to level 1, 2, or 3.
Risk Control (Clause 6)

- Hazardous Situation Identified
- Risk Estimated
- Risk reduction required?
 - Yes: Option Analysis (6.2) → Implementation (6.3) → Residual Risk (6.4) → Risk Benefit (6.5) → New Risks (6.6) → Completeness Check (6.7) → Overall Risk (7)
 - No: Completeness Check (6.7) → Overall Risk (7)
Residual Risk Evaluation (Clause 7)

- The Risk Management Plan defines risk evaluation criteria for overall risk
- After the risk control measures are implemented and validated, review the overall risk
- If the overall risk is unacceptable, determine if the medical benefits outweigh the overall residual risk
Risk Management Report
(Clause 8)

• Prior to release of the device, you need to review the risk management process.

• The review ensures:
 – The Risk Management Plan is implemented
 – Overall residual risk is acceptable
 – Measures are in place to obtain production and post-production information

• The review’s results become the Risk Management Report, and is included in the risk management file
Production & Post-production Information (Clause 9)

• Collect information about your device in the production phase.
 – Review acceptance data
 – Look closely at validated processes and their controls

• In the post-production phase review:
 – Installation and servicing reports
 – Customer complaints
 – New or revised standards
 – Public information, including similar medical devices
An Example to Keep in Mind

The Neonatal Heel Stick
The example helps illustrate the concepts

- Neonates (babies under 1 month of age) are routinely tested for metabolic diseases.

- A nurse draws a sample of blood from the baby’s heel, places it on filter paper, and allows it to dry.

- The dried blood spot is sent to a laboratory for testing.
The Heel Stick

- The nurse uses a lancet to draw the blood in a process called a heel stick.

- In this application, the chemical pack is a medical device in the US.

- To make the heel stick easier, the nurse warms the baby’s heel, often using a chemical pack.

- The technology is a familiar heat generating chemical pack, activated by squeezing or mixing.
Product Description

• Early in 2009, the FDA published a note describing problems with the heel warmer.

• The Infant Heel Warmer:
 – Is an instant chemical heat pack. It increases capillary circulation in an infant’s heel to facilitate blood collection by heel stick.
 – [It is a] nonsterile, single-use, disposable device containing a nontoxic material.
 – Device activation results in an exothermic reaction with a maximum temperature of around 104°F (40°C) within the first few minutes before it gradually diminishes.

• In the US it is
 – A Class I device
 – For infant use, it requires a 510(k)
Potential Product Problems

- Based on Medical Device Reports (MDRs), the FDA cited four cases.
 - Case 1: An infant suffered second to third-degree burns to the heel requiring treatment.
 - Case 2: Twins with hyperbilirubinemia were being prepared for a heel-stick procedure. The heel warmer ruptured, its contents covered the infants, and they suffered first and second-degree burns.
 - Case 3: An infant received a second-degree burn when the device was reused and reheated contrary to labeling instructions.
 - Case 4: When the nurse activated the infant heel warmer, it burst open and splashed her in her eyes. The infant wasn’t hurt, but the nurse required emergency eye wash and ophthalmic antibiotics.
Definitions

Clause 2
The Components of Risk

Hazards, set off by a sequence of events, create Harm. Severity & Probability combine to measure Risk.

- Hazard
- Hazardous Situation
- Harm
- Severity of the Harm
- Probability of Occurrence of the Harm
- Risk

Adapted from ISO 14971:2007, Annex E
Definitions – Hazard

Hazard - potential source of harm

Discussion
The manufacturer identifies device hazards. The standard creates a potential 2×2 classification for hazards – they could be known or foreseeable; they could arise in normal or fault condition.

Example
The FDA advice identifies 3 hazards:
- Excessive heat
- Rupture
- Improper reuse

<table>
<thead>
<tr>
<th>Known</th>
<th>Foreseeable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Condition</td>
<td></td>
</tr>
<tr>
<td>Fault Condition</td>
<td></td>
</tr>
</tbody>
</table>

Ombu Enterprises, LLC
Definitions – Hazardous Situation

<table>
<thead>
<tr>
<th>Hazardous situation</th>
<th>circumstance in which people, property, or the environment are exposed to one or more hazard(s)</th>
</tr>
</thead>
</table>

Discussion
A hazard is potential, and doesn’t arise until set off by a sequence of events. It then becomes a hazardous situation allowing exposure to the hazard. A hazardous situation can occur in normal operation or in a fault condition.

Example
Postulated sequences allowing a hazardous situation:
- Excessive heat
 - Chemical mix is incorrect
 - Use of a “blanket”, contrary to manufacturer’s instructions
- Rupture
 - Incorrect seal strength
- Improper reuse
 - Reuse of a single use device, contrary to manufacturer’s instructions
Definitions – Harm

Harm – physical injury or damage to the health of people, or damage to property or the environment

Discussion
Harm is the actual injury or damage that occurs from a hazardous situation. Harm arises from a hazardous situation.

Example
- Excessive heat
 - Thermal burn of the skin
- Rupture
 - Thermal burn of the skin
 - Chemical burn of the skin, eyes, etc.
- Improper reuse
 - See excessive heat
 - See rupture
Definitions – Severity

Severity – measure of the possible consequences of a hazard

Discussion
When harm occurs, it can have different levels of seriousness. Severity is the measure of seriousness of the harm.

Example
• Thermal Burn
 • First degree
 • Second degree
 • Third degree
• Chemical Burn
 • Skin
 • Eyes

Example
These instance must be converted to the manufacturer’s description of severity. This is often a qualitative approach.
Definitions – Probability of Occurrence

Probability of occurrence – the likelihood that the harm occurs with the stated severity

Discussion
Some harms are less likely to occur than others. In addition, harms with different severity usually have different likelihood of happening.

Example
- Thermal burn resulting from incorrect chemical mix → Very Low
- Thermal burn resulting from use of a “blanket” → Low
- Thermal burn resulting from a burst package → Very Low
- Chemical burn resulting from a burst package → Very Low
Definitions – Risk

Risk – combination of the probability of occurrence of harm and the severity of that harm

Discussion
Risk combines two factors, usually in a qualitative approach. Risk increases with the severity of the harm. It also increases with the probability of occurrence of the harm. Risk is often expressed as a specialized “multiplication table”.

Example
Burst package results in 3rd degree (thermal) burn of a nurse. Severity: Significant
Probability: Low
Risk: Medium

<table>
<thead>
<tr>
<th>Probability of Occurrence</th>
<th>Severity of Harm</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Low</td>
<td>Medium</td>
</tr>
</tbody>
</table>

Notes:
- Significant
- Moderate
- Negligible

Severity:
- Low
- Medium
- High
Developing the Risk Management Plan

Clause 3.4

Annex F
Role of the Risk Management Plan

• The Risk Management Plan provides the overarching approach to the managing risk.

• It can take a variety of forms
 – Stand alone document
 – Integrated into QMS documents
 – Refer to other documents

• The structure and detail should relate to the medical device risk.
Scope of the Plan

- The scope needs to identify
 - the medical device (or family)
 - and the life cycle

- The risk management activities are mapped to the life cycle
Assign Responsibility and Authority

• Assign roles and their responsibilities

• Examples include:
 – Reviewer
 – Approval authority
 – Expert
 – Verification specialist

• Follow the roles and responsibilities in the design project to avoid confusion

• The RASI Matrix is a useful tool for tasks

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support</td>
<td>Inform</td>
</tr>
</tbody>
</table>
Criteria for Risk Acceptability

• The Risk Management Plan needs two sets of criteria
 – One arises from the risk assigned to each hazardous situation
 – The other arises from the overall risk
Concept of Risk

The concept of risk starts with continuous Probability and Severity dividing the Risk area into regions.

- **Unacceptable**
- **As low as reasonably practicable**
- **Acceptable**

![Risk Area Diagram]

Increasing Severity

Increasing Probability
But more often becomes a table

<table>
<thead>
<tr>
<th>Severity Levels</th>
<th>Probability Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>Catastrophic</td>
<td>Results in death</td>
</tr>
<tr>
<td>Critical</td>
<td>Results in permanent impairment to life-threatening injury</td>
</tr>
<tr>
<td>Serious</td>
<td>Results in injury or impairment requiring medical intervention</td>
</tr>
<tr>
<td>Minor</td>
<td>Results in injury or impairment not requiring medical intervention</td>
</tr>
<tr>
<td>Negligible</td>
<td>Inconvenience or temporary discomfort</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequent</td>
<td>Happens often</td>
</tr>
<tr>
<td>Probable</td>
<td>Likely to happen</td>
</tr>
<tr>
<td>Occasional</td>
<td>Can happen, but not likely</td>
</tr>
<tr>
<td>Remote</td>
<td>Unlikely to happen</td>
</tr>
<tr>
<td>Improbable</td>
<td>Highly unlikely to happen</td>
</tr>
</tbody>
</table>
that represents risk

<table>
<thead>
<tr>
<th>Probability Levels</th>
<th>Severity Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negligible</td>
</tr>
<tr>
<td>Frequent</td>
<td>R2</td>
</tr>
<tr>
<td>Probable</td>
<td>R2</td>
</tr>
<tr>
<td>Occasional</td>
<td>R2</td>
</tr>
<tr>
<td>Remote</td>
<td>R1</td>
</tr>
<tr>
<td>Improbable</td>
<td>R1</td>
</tr>
</tbody>
</table>

R1 Acceptable risk
R2 As Low As Reasonably Practicable
R3 Unacceptable

Each company must develop its own risk analysis system.

The risk matrix may differ by product. For example, a risk matrix for a heel warmer may not be adequate for an automatic defibrillator.
Overall Residual Risk Evaluation

• If each risk is low, then the residual risks should be low.

• When residual risk remains, it should be evaluated by specialists with knowledge of the device.

• If the residual risk is too high, it may be offset by the medical benefit.
 – X-rays cause damage to tissue, but the diagnostic benefit outweighs the risk.
Verification Activities

• The standard says there are two distinct verification activities
 – Ensure the risk control measures are implemented in the final design.
 – Ensure the implemented risk control measures actually reduce the risk.

• The Risk Management Plan explains how to conduct these verifications.
Production Activity – Data Collection and Review

• The Plan describes how you will collect and review data from production activities
 – Some production activities, if performed incorrectly, could increase risk
 – Identify them and monitor process results
 – Pay particular attention to processes that must be validated

• Our example
 – The chemical mix determines the temperature of the heal warmer. Monitor mix parameters.
 – One would expect destructive testing for seal strength and temperature profile. Monitor the results of these tests.
Post-production Activity – Data Collection And Review

• The plan describes how you will collect and review post-production activity

• Include the following areas in data collection:
 – Customer complaints
 – Installation reports
 – Servicing reports
 – FDA’s Adverse Event reports
 – Professional literature

• For each item collected, review the hazard, hazardous situation, and risk
 – The new information may lead you to update the previous analysis and conclusion
Performing Risk Analysis

Clause 4
Risk Analysis Methodology

- This is a systematic approach to determine risk
 - List every hazard (know or foreseeable)
 - List the associated hazardous situations
 - List the chain of events that creates each hazardous situation
 - Identify the potential harm(s)
 - Estimate the severity and probability
 - Calculate the risk, using the Risk Management Plan
This approach lends itself to a spreadsheet

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Chain of events</th>
<th>Hazardous Situation</th>
<th>Potential Harms</th>
<th>Severity</th>
<th>Probability</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pouch bursts</td>
<td>* Operator error setting up sealing machine</td>
<td>Pouch spills hot contents</td>
<td>Second degree thermal burn</td>
<td>Serious</td>
<td>Occasional</td>
<td>R2</td>
</tr>
<tr>
<td></td>
<td>* Weak seal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Nurse aggressively mixes the pouch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Nurse reheats the pouch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Aggressive mixing breaks seal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The spreadsheet could contain many rows. Notice that a hazard could have more than one chain of events.
Identifying hazards can be difficult

- The standard has a number of helpful aids
 - Annex C helps identify device characteristics that may impact safety
 - Table E.1 provides a list of potential hazards
 - Table E.2 offers a list of potential initiating events
 - Table E.3 shows examples of hazards, chain of events, hazardous situations, and harm
 - Annex H provides additional information for \textit{in vitro} diagnostic devices
Risk Evaluation

Clause 5
The Prior Work Simplifies Risk Evaluation

• The Risk Management Plan contains the criteria for acceptable risk

• Risk Analysis determined the risk for each hazardous situation

• Application of the criteria to each hazardous situation determines the need for risk reduction
Recall Our Previous Flow Chart

1. Hazardous Situation Identified
2. Risk Estimated
3. Risk reduction required? (Yes/No)
 - Yes: Option Analysis (6.2) → Implementation (6.3) → Residual Risk (6.4) → Risk Benefit (6.5) → New Risks (6.6) → Completeness Check (6.7) → Overall Risk (7)
 - No: Risk evaluation (Clause 5) for each identified hazardous situation

Risk Management - ISO 14971
Risk Control

Clause 6
Risk Management - ISO 14971

Option Analysis (6.2)

Select risk control measures in the specified order:
inherent safety by design ➔ protective measures ➔ safety information

Implementation (6.3)

Implement the selected risk control measures
• Verify implementation of each risk control measure
• Record the results in the risk management file

Residual Risk (6.4)

After implementation of risk control measures
• Evaluate residual risk by the risk management plan
• If necessary, apply further risk control measures

Risk Benefit (6.5)

Decide if medical benefits outweigh the risk when:
• Residual risk is not acceptable
• Further risk control is not practicable

New Risks (6.6)

Determine if risk control introduced any new risks
Check if previously estimated risks are affected
Ensure the risks from all identified hazardous situations are considered.
Evaluation of Overall Residual Risk Acceptability

Clause 7
This is a Broad View of Risk

• Previously we evaluated the risk of each hazardous situation
 – If it didn’t meet the criteria we reduced the risk
 – We also cycled through all the hazardous situations to evaluate impacts

• Now we take a broader view to evaluate the whole device
Use Expert Opinion to Review and Decide

Overall residual risk acceptable?

Medical benefits outweigh risk?

STOP THE PROJECT

Disclose overall risk
Disclosing Overall Risk

• Annex J offers guidance on communicating risk

• Information for safety is the least preferred method
 – Recall the priority order: inherent safety by design ➔ protective measures ➔ safety information

• Identify who receives the information and how

• Explain the risk, the consequences of exposure, and how to prevent the harm
The GHTF Guidance

Implementation of risk management principles and activities within a Quality Management System
Purpose and Overview

• The GHTF Guidance focuses on integrating Risk Management into the Quality Management System (QMS).

• The scope of ISO 14971 says
 – “This International Standard does not require that the manufacturer have a quality management system in place. However, risk management can be an integral part of a quality management system.”
Phases of Risk

1st Phase

Acceptable levels of risk
A policy or procedure determines risk acceptability criteria
It is derived from experience and research on currently accepted risk levels

2nd Phase

Risk analysis
Identify hazards in normal use or foreseeable misuse
Estimate the for each identified hazard

3rd Phase

Compare risks to acceptability criteria
Determine the need for risk reduction, if necessary
Determines the appropriate level of required risk reduction

4th Phase

Risk control and monitoring activities
Activities can begin as early as design input, and continues through manufacturing, distribution, installation, and servicing. Activities cover the device life cycle.
The Guidance Covers Areas of the QMS

- Management Responsibilities
- Outsourcing
- Planning
- Design and Development
- Traceability
- Purchasing Control and Acceptance Activities
- Production and Process Controls
- Servicing
- Analysis of Data
- Corrective and Preventive Actions (CAPA)
Two Areas are Worthy of Note

<table>
<thead>
<tr>
<th>Design and Development</th>
<th>CAPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>– The guidance covers each area of design and development.</td>
<td>– The guidance contains a detailed flowchart integrating risk management into the CAPA process.</td>
</tr>
<tr>
<td>– Annex B contains a detailed flowchart placing risk management activities in the design and development process</td>
<td>– The flowchart identifies key quality data points:</td>
</tr>
<tr>
<td></td>
<td>Service Reports</td>
</tr>
<tr>
<td></td>
<td>Product Complaints</td>
</tr>
<tr>
<td></td>
<td>Manufacturing</td>
</tr>
<tr>
<td></td>
<td>Nonconformities/Defects</td>
</tr>
<tr>
<td></td>
<td>Engineering</td>
</tr>
<tr>
<td></td>
<td>Nonconformities/Defects</td>
</tr>
<tr>
<td></td>
<td>Quality System</td>
</tr>
<tr>
<td></td>
<td>Nonconformities/Defects</td>
</tr>
</tbody>
</table>
Tools for Risk Management

Failure Modes and Effects Analysis
Fault Tree Analysis
Hazard Analysis and Critical Control Point
Failure Modes and Effects Analysis (FMEA)

- This is a standard reliability technique adapted to risk analysis.

- In risk analysis, there is a very important consideration. Hazards and Harms do not require failure!

- Evaluate risk management in normal, single fault, and multiple fault conditions.
The Standard Method

- A large spreadsheet where each row relates to a hazard.
- Typical column entries include:
 - Function
 - Hazard
 - Harm
 - Mode (Normal, single fault, or multiple fault)
 - Severity
 - Occurrence
 - Detection
 - Risk Priority Number (Determine by severity, occurrence, & detection as defined in the Risk Management Plan)
 - Mitigation
 - Responsibility
 - Verification
Fault Tree Analysis (FTA)

- A Fault Tree is a logic diagram showing the paths to an event
- The event under study is called the Top Event
- The causes of the Top Event are diagramed using standard logic gate symbols
Logic Symbols

AND
The output event occurs when all input events occur at the same time

OR
The output event occurs when at least one of the input events occur
A Fault Tree

Pump Failure

- Bearing Failure
- Motor Failure
- Seal Failure
- Valve Failure
 - Coupling Failure
 - Electrical Failure
 - Power Failure
 - Battery Exhausted

A coupling failure causes a motor failure
A motor failure causes a pump failure
A power failure AND battery exhausted cause an electrical failure
Fault Tree Analysis (FTA) Steps

Fault Tree Analysis usually involves five steps:

1. Define the undesired event to study, the Top Event
 – State the undesired event that can cause risk

2. Understand the system
 – Describe the events that could allow the Top Event to happen. For each event determine the what would cause it. Continue to analyze the system.

3. Construct the fault tree
 – After selecting the undesired event and analyzed the system to identify the causal events, construct the Fault Tree. Describe the events and their relationships using AND and OR gates. More complex gates are also possible.

4. Evaluate the fault tree
 – Evaluate the Fault Tree. Look for possible improvements that can mitigate, reduce, or eliminate the events. Identify all possible hazards affecting in a direct or indirect way the system.

5. Control the hazards identified
 – After identifying the events and hazards, determine methods to decrease the probability of occurrence.
Hazard Analysis and Critical Control Point (HACCP)

• HACCP is a system to prevent problems, rather than finding them by inspection at the end of the production process.

• HACCP is used by US regulatory agencies (FDA and USDA) to help protect the food supply.

• HACCP is based on seven principles described in the FDA’s *Hazard Analysis and Critical Control Point Principles and Application Guidelines*.
HACCP Principles

• Principle 1: Conduct a hazard analysis
 – The hazard analysis develops a list of significant hazards that they are reasonably likely to cause injury or illness if not effectively controlled.

• Principle 2: Determine the critical control points (CCPs)
 – A critical control point is a step at which control can be applied to prevent or eliminate a hazard or reduce it to an acceptable level.

• Principle 3: Establish critical limits
 – A critical limit is a maximum and/or minimum value to which a parameter must be controlled at a CCP to prevent, eliminate or reduce to an acceptable level the occurrence of a hazard. A critical limit is used to distinguish between safe and unsafe operating conditions at a CCP.
HACCP Principles (cont.)

• **Principle 4: Establish monitoring procedures**
 – Monitoring is a planned sequence of observations or measurements to assess whether a CCP is under control and to produce an accurate record for future use in verification.

 – Monitoring serves three main purposes.
 • Monitoring facilitates tracking of the operation. If monitoring indicates that there is a trend towards loss of control, then action can be taken to bring the process back into control before a deviation from a critical limit occurs.
 • Monitoring is used to determine when there is loss of control and a deviation occurs at a CCP, *i.e.*, exceeding or not meeting a critical limit. When a deviation occurs, an appropriate corrective action must be taken.
 • Monitoring provides written documentation for use in verification.
HACCP Principles (cont.)

• Principle 5: Establish corrective actions
 – The HACCP system identifies hazards and establishes strategies to prevent, eliminate, or reduce their occurrence. Deviations from established processes may occur, so if there is a deviation from established critical limits, corrective actions are necessary. Specific corrective actions should be developed in advance for each CCP and included in the HACCP plan
 – Corrective actions should include the following elements:
 (a) determine and correct the cause of non-compliance;
 (b) determine the disposition of non-compliant product and
 (c) record the corrective actions that have been taken.
HACCP Principles (cont.)

• Principle 6: Establish verification procedures
 – Verification is defined as those activities, other than monitoring, that determine the validity of the HACCP plan and that the system is operating according to the plan.

• Principle 7: Establish record-keeping and documentation procedures
 – Generally, the records maintained for the HACCP System should include the following:
 • A summary of the hazard analysis, including the rationale for determining hazards and control measures
 • The HACCP Plan
 • Support documentation such as validation records
 • Records that are generated during the operation of the plan
Summary & Conclusions
Summary

• The standard method for medical device risk management is ISO 14971:2007
 – The FDA recognizes it as a consensus standard
 – The EU lists it as a harmonized standard to the MDD, IVD, and AIMD
 – ISO 13485:2003 recommends ISO 14971 for risk management
Summary

• ISO 14971 implementation starts with a Risk Management Plan

• The implementation flows through a series of steps defined in the respective clauses:
 – 4: Risk Analysis
 – 5: Risk Evaluation
 – 6: Risk Control
 – 7: Residual Risk Evaluation
 – 8: Risk Management Report
 – 9: Production & Post-production Information

• Maintain of the information in the Risk Management File
Summary

• The Risk Management File is not a static document

• It should include production information
 – Monitor production processes that contribute to risk factors
 – Validated processes are particularly significant contributors

• It include post-production information
 – Integrate the complaint and post-market surveillance processes
Conclusions

- ISO 14971:2007 is the *de facto* standard for medical device risk management

- Regardless of the marketing region (US, EU, Canada, etc.) ISO 14971 is a valuable addition to a medical device QMS

- ISO 14971 is most effective when it is integrated into a company’s QMS.
QUESTIONS